Coiled Tubing Telemetry System Improvements with Real-Time Tension, Compression, and Torque Data Monitoring

Tom Watkins, Coiled Tubing Research and Engineering (CTRE)

October 19, 2016
ICoTA Roundtable, Calgary, Canada

The Problem to be Solved

CTT System Architecture

CTT Wire

- 1/8-in. outside diameter (OD) corrosion resistant alloy tube
- Housing insulated electrical conductor
- Non-intrusive
- Passage of activation balls
- Extremely quick head up (<30 minutes)</p>
- Compatible with common oilfield fluids and slurries
- Minimal effect on flow rates, friction pressures
- Minimal weight (about one tenth of braided cable)

CTT Tools

Tension, Compression, and Torque (TCT) Assembly

TCT Electronics Module

- Uses pressure/temperature transducers for compensation
- Calibrated for
 - +/- 30,000 lb. axial forces
 - 1,500 ft-lb torque (right hand)
- Design challenges
 - Low signal to noise ratio
 - Printed circuit boards installed in small space
 - Inside fluid flow path

TCT Assembly Laboratory Testing (1)

- ➤ Tested sensor response in laboratory to external axial and torsional applied loads
- ➤ Testing procedure
 - Known force/torque was applied in different steps and compared to the force/torque indicated by the TCT sensors
- ➤ Tests done at atmospheric conditions (ambient pressure and temperature) and expected downhole values

TCT Assembly Laboratory Testing (2)

- Applied/measured compression (-) and tension (+) force errors for annulus pressure between 0 and 6,000 psi
- High-load maximum tension/compression errors in the order of 100 lb
- Low-load maximum pulling/pushing errors in the order of 30 lb

TCT Assembly Laboratory Testing (3)

- Applied and measured torque errors for annulus pressure between 0 and 6,000 psi
- Maximum torque error was 26 lb-ft
- Temperature effects are strongest and need to be compensated
- A temperature change of 1°C gives an apparent strain of 30 lb

Case History – Well Details

- Offshore well in Caspian Sea
- Upper completion mainly 7-in.Cr13 and L-80 tubing
- Unconsolidated sandstone formation
- Uneven gravel packing in several sections allowed incoming sand to damage the screens and began filling the wellbore
- Permanently installed distributed acoustics sensing (DAS) fiber indicated several sand entry points along the wellbore

Case History – Planned Objectives

- Conduct a concentric CT cleanout to remove sand from the wellbore and reach TD
- Set a bridge plug with the CTT system at the depth of 13,481 ft MD
- Set six 44.3 ft-long 3-in. OD expandable steel patches over two different intervals
 - Between 13,173 and 13,327 ft MD (four patches)
 - Between 12,710 and 12,787 ft MD (two patches)

Case History – Snapshot of Typical Setting Steps

Case History – TCT Assembly Output

Case History - Outcome

- Well was cleaned out up to 13,481 ft MD (tagged) recovering a total of 452 lb of sand in one run
- A high-pressure, high-temperature (HPHT) sand shutoff plug was successfully installed at 13,481ft MD with the CCT system with no downtime or non-conformance recorded during the bridge plug setting
- ➤ A 3.75-in. test packer was run in hole to understand the downhole behavior of the CT and TCT assembly
- Six expandable steel patches were placed at the pre-determined depths (each required approximately 25 steps)
- ➤ Total time to perform the entire operation was 286.25 hours, five days ahead of the operator's estimate

Operational Benefits of the TCT Assembly

- Milling optimization
- > Fishing time reduction
- Extended-reach capabilities enhancement
- Cleanout execution enhancement
- Actuation and position verification

Conclusions

- TCT assembly is modular and could be easily installed and uninstalled from the main sensor assembly of the CTT system
- An extensive laboratory testing regime has been performed at atmospheric and downhole conditions resulting in:
 - Improved pressure compensation
 - New temperature compensation
- Reported results for a complex operation in an offshore well in Caspian Sea
 - Cleaned out using a concentric coiled tubing technology
 - Six expandable steel patches were installed
 - Overall, the TCT assembly reacted qualitatively as expected, with job completed in five days ahead of the operator's estimate

Acknowledgements

CTRE/Baker Hughes Staff

Thank You / Questions